

A Partnership between the Northern Ohio Energy Storage Community, DOE and National Laboratories

A REVIEW OF ENERGY STORAGE TECHNOLOGIES FOR AUTOMOTIVE APPLICATIONS

Kenneth P. Dudek, PhD

A Partnership between the Northern Ohio Energy Storage Community, DOE and National Laboratories

Kenneth P. Dudek, PhD

- CEO and Founder of CAR Technologies LLC
- Adjunct CAR Fellow at the Ohio State
 University/Center for Automotive Research
- 25-year General Motors R&D & Powertrain
- Boss Kettering Award Winner
- Over 30 patents in controls arena
- B.S, M.S., PhD Electrical Engineering Notre Dame University

A Partnership between the Northern Ohio Energy Storage Community, DOE and National Laboratories

Robert P. Lane, MBA

- EVP and Founder of CAR Technologies LLC
- 16-year Automotive Industry Consulting and Engineering Services – Alternative Fuel Vehicles
- 2009 Responsible for \$278M of the \$1.4B of ARRA Grant Activity (20%)
 - Cell and Pack Manufacturing
 - Commercial Vehicle Electrification
 - Fuel Efficient Components (hybrid transmissions)
- Launched CAR Technologies in 2009
- B.S. University of Tennessee, MBA Emory University

A Partnership between the Northern Ohio Energy Storage Community, DOE and National Laboratories

CAR Technologies LLC

- Facilities construction started in 2010
- Tier 1 to Vehicle and Battery OEMs
- Characterization, Performance, and Durability Testing
- Cell, Module and Pack FMEA
- Battery Management Systems (HW, SW, Algorithms)

Columbus, OH Lab

- 120 channel of 0-8V, 400 amp cell cycling
 - 10 mA, 10 mV measurement accuracy
- 10 channels of pack cycling
- Wet labs; High temperature water baths
- Electron Microscopy; X-ray Diffraction on site
- Coming to Warren, OH
 - TBEIC partner

A Partnership between the Northern Ohio Energy Storage Community, DOE and National Laboratories

The Need for Energy Storage in the Automotive Industry

The Energy Storage Market Will Grow From \$32 Billion in 2014 to \$50 Billion in 2020

"Currently Lead Acid Dominates Automotive Energy Storage" (Lithium Ion Coming On Strong)

Source: Lux Research, Inc.

more harresterables com-

A Partnership between the Northern Ohio Energy Storage Community, DOE and National Laboratories

Adoption of Energy Storage in the Automotive Industry

Drivers

- Regulatory/Policy
 - CAFE Standards
 - CARB
 - Carbon Markets?
- Experience with Energy Storage Manufacturers
- Incentives
 - For now
- Risk vs. Reward
 - Emission free (kind of)
 - Electric propulsion can have awesome vehicle performance

Barriers

- Consumer adoption rates
 - COST!!
 - Range Anxiety (=COST)
- Manufacturing flexibility & infrastructure
 - Motors vs. IC-based Powertrains
- Development time for new vehicles (50-84 months)
- Penetration of 12V infrastructure in vehicle
- Risk vs. Reward
 - Large, additional development costs (over too few units)
 - Warranty

A Partnership between the Northern Ohio Energy Storage Community, DOE and National Laboratories

Automotive Energy Storage Solutions

Conventional ICE vehicles CLASS 1 Start-stop vehicles Lead-Based battery (SLL EFB or AGM) Micro-hybrid vehicles (basic) Micro-hybrid vehicles (adv) Mix of battery 48-400 V CLASS 2 Mild-hybrid vehicles Full-hybrid vehicles (HEVs) Lead-based auxiliary battery Lithium-ion battery (or NaNiCl2 battery for Plug-in hybrid electric 250V-600 \ some heavy vehicles) CLASS 3 vehicles (PHEVs) Full electric vehicles (EVs) Lead-based 12 V auxiliary battery

A Partnership between the Northern Ohio Energy Storage Community, DOE and National Laboratories

Automotive Energy Storage Solutions – Start-Stop (Class 1)

A Partnership between the Northern Ohio Energy Storage Community, DOE and National Laboratories

Current State of the Automotive Industry – Start-Stop (Class 1)

		Target		
End of Life Characteristics	Units	Under hood	Not under hood	
Discharge Pulse, 1s	kW	(6	
Max discharge current, 0.5s	A	90	00	
Cold cranking power at -30 °C (three 4.5-s pulses, 10s rests between pulses at min SOC)	kW	6 kW for 0.5s followed by 4 kV for 4s		
Min voltage under cold crank	Vdc	8	.0	
Available energy (750W accessory load power)	Wh	30	60	
Peak Recharge Rate, 10s	kW	2	.2	
Sustained Recharge Rate	W	7:	50	
Cycle life, every 10% life RPT with cold crank at min SOC	Engine starts/miles	450k	/150k	
Calendar Life at 30°C, 45°C if under hood	Years	15 at 45°C	15 at 30°C	
Minimum round trip energy efficiency	%	9	5	
Maximum allowable self-discharge rate	Wh/day		2	
Peak Operating Voltage, 10s	Vdc	15.0 14.6 10.5		
Sustained Operating Voltage - Max.	Vdc			
Minimum Operating Voltage under Autostart	Vdc			
Operating Temperature Range (available energy to allow 6 kW (1s) pulse)	°C	-30 to +75	-30 to +52	
30 °C − 52 °C	Wh	360 (to 75°C)	360	
0 °C	Wh	13	80	
-10 °C	Wh	108 54		
-20 °C	Wh			
-30 °C	Wh	36		
Survival Temperature Range (24 hours)	°C	-46 to +100	-46 to +66	
Maximum System Weight	kg	10		
Maximum System Volume	Ţ	,	7	
Maximum System Selling Price (@250k units/year)	\$	\$220	\$180	

Huge challenge for today's PbA

Huge challenge for today's Lithium

A Partnership between the Northern Ohio Energy Storage Community, DOE and National Laboratories

Automotive Energy Storage Solutions – Hybrid Vehicles (Class 2)

A Partnership between the Northern Ohio Energy Storage Community, DOE and National Laboratories

Current State of the Automotive Industry – Hybrid Vehicles (Class 2)

USABC Requirements of Energy Storage Systems for 48V HEV's at EOL

)
Characteristics	Units	Target	
Peak Pulse Discharge Power (10 sec)	kW	9	
Peak Pulse Discharge Power (1 sec)	kW	11	
Peak Regen Pulse Power (5 sec)	kW	11	
Available Energy for Cycling ¹	Wh	105	
Minimum Round-trip Energy Efficiency	%	95	
Cold cranking power at -30 °C (three 4.5-s pulses, 10s rests between pulses at min SOC)	kW	6 kW for 0.5s followed by 4 kW for 4s	
Accessory Load (2.5 minute duration) ¹	kW	5	
CS 48V HEV Cycle Life ²	Cycles /MWh	75,000 / 21	
Calendar Life, 30°C	year	15	
Maximum System Weight	kg	≤8	
Maximum System Volume	Liter	≤8	
Maximum Operating Voltage	Vdc	52	
Minimum Operating Voltage	Vdc	38	
Minimum Voltage during Cold Crank	Vdc	26	
Maximum Self-discharge	Wh/day	1	
Unassisted Operating Temp Range (Power available to allow 5s charge and 1s discharge pulse) at min. and max. operating SOC and Voltage		-30 to +52	
30 °C - 52 °C	kW	11	
0 ℃	kW	5.5	
-10 °C	kW	3.3	
-20 °C	kW	1.7	
-30 °C	kW	1.1	
Survival Temperature Range	°C	-46 to +66	
Max System Production Price @ 250k units/yr	\$	\$275	

DOWER

[some chemistries are challenged]

Packaging

Cost

A Partnership between the Northern Ohio Energy Storage Community, DOE and National Laboratories

Current State of the Automotive Industry – Hybrid Vehicles (Class 2)

USABC Requirements at End of Life for LEESS PA HEV

Charge Acceptance

		PA (Low	er	
End of Life Characteristics	Unit	Energy)		
2s / 10s Discharge Pulse Power	kW	55	20	
2s / 10s Regen Pulse Power	kW	40	30	1
Discharge Requirement Energy	Wh	5(5	
Regen Requirement Energy	Wh	8.	3	
Maximum current	A	30	0	
Energy over which both requirements are met	Wh	20	5	
Energy window for vehicle use	Wh	16	5	
Energy Efficiency	%	9	5	
Cycle-life	Cycles	300,000	(HEV)	
Cold-Cranking Power at -30°C (after 30 day				
stand at 30 °C)	kW	5		
Calendar Life	Years	1:	5	
Maximum System Weight	kg	20)	
Maximum System Volume	Liter	10	5	
Maximum Operating Voltage	Vdc	≤40	00	
Minimum Operating Voltage	Vdc	≥0.55	5 V _{max}	
Unassisted Operating Temperature Range	°C	-30 to	+52	
30°-52°	%	10	0	
0°	%	50)	
-10°	%	30)	
-20°	%	1:	5	
-30°	%	10)	
Survival Temperature Range	°C	-46 to	+66	
Selling Price/System @ 100k/yr)	\$	40	0	٦

USABC Goals for HIGH POWER, LOWER ENERGY – ENERGY STORAGE SYSTEM (LEES) for POWER ASSIST HYBRID ELECTRIC VEHICLE (PAHEV) APPLICATIONS

Cycle Life

A Partnership between the Northern Ohio Energy Storage Community, DOE and National Laboratories

Automotive Energy Storage Solutions – Plug-in/Full Electric (Class 3)

A Partnership between the Northern Ohio Energy Storage Community, DOE and National Laboratories

Current State of the Automotive Industry – Plug-ins (Class 3)

USABC Requirements of Energy Storage Systems for PHEVs at EOL					
Characteristics	Units	PHEV-20 Mile	PHEV-40 Mile	xEV-50 Mile	
Commercialization Timeframe		2018	2018	2020	
AER	Miles	20	40	50	
Peak Pulse Discharge Power (10 sec)	kW	37	38	100	
Peak Pulse Discharge Power (2 sec)	kW	45	46	110	
Peak Regen Pulse Power (10 sec)	kW	25	25	60	
Available Energy for CD (Charge Depleting) Mode	kWh	5.8	11.6	14.5	
Available Energy for CS (Charge Sustaining) Mode	kWh	0.3	0.3	0.3	
Minimum Round-trip Energy Efficiency	96	90	90	90	
Cold cranking power at -30°C, 2 sec - 3 Pulses	kW	7	7	7	
CD Life / Discharge Throughput	Cycles/MWh	5000/29	5000/58	5000/72.5	
CS HEV Cycle Life, 50 Wh Profile	Cycles	300,000	300,000	300,000	
Calendar Life, 30°C	year	15	15	15	
Maximum System Weight	kg	70	120	150	
Maximum System Volume	Liter	47	80	100	
Maximum Operating Voltage	Vdc	420	420	420	
Minimum Operating Voltage	Vdc	220	220	220	
Maximum Self-discharge	%/month	<1	<1	<1	
System Recharge Rate at 30°C	kW	3.3 (240V/16A)	3.3 (240V/16A)	6.6 (240V/32A)	
Unassisted Operating & Charging Temp Range	°C	-30 to +52	-30 to +52	-30 to +52	
30°-52°	96	100	100	100	
00	96	50	50	50	
-10°	96	30	30	30	
-200	96	15	15	15	
-30°	96	10	10	10	
Survival Temperature Range	°C	-46 to +66	-46 to +66	-46 to +66	
Max System Production Price @ 100k units/yr	s	\$2,200	\$3,400	\$4,250	

Packaging = Energy/Volume Energy/Kg

A Partnership between the Northern Ohio Energy Storage Community, DOE and National Laboratories

Current State of the Automotive Industry – Full EVs (Class 3)

USABC Goals for Advanced Batteries for EVs - CY 2020 Commercialization

End of Life Characteristics at 30°C	Units	System Level	Cell Level
Peak Discharge Power Density, 30 s Pulse	W/L	1000	1500
Peak Specific Discharge Power , 30 s Pulse	W/kg	470	700
Peak Specific Regen Power , 10 s Pulse	W/kg	200	300
Useable Energy Density @ C/3 Discharge Rate	Wh/L	500	750
Useable Specific Energy @ C/3 Discharge Rate	Wh∕kg	235	350
Useable Energy @ C/3 Discharge Rate	kWh	45	N/A
Calendar Life	Years	15	15
DST Cycle Life	Cycles	1000	1000
Selling Price @ 100K units	\$/kWh	125	100
Operating Environment	°C	-30 to +52	-30 to +52
Normal Recharge Time	Hours	< 7 Hours, J1772	< 7 Hours, J1772
High Rate Charge	Minutes	80% ΔSOC in 15 min	80% ΔSOC in 15 min
Maximum Operating Voltage	V	420	N/A
Minimum Operating Voltage	V	220	N/A
Peak Current, 30 s	A	400	400
Unassisted Operating at Low Temperature	%	> 70% Useable Energy @ C/3 Discharge rate at -20 °C	> 70% Useable Energy @ C/3 Discharge rate at -20°C
Survival Temperature Range, 24 Hr	℃	-40 to+ 66	-40 to+66
Maximum Self-discharge	%/month	<1	<1

Challenge for traditional large format cells

Fast Charge

-20 °C Operation

A Partnership between the Northern Ohio Energy Storage Community, DOE and National Laboratories

Current Energy Storage Gaps - PbA

Priority areas for improving performance:

- Higher cycle life
- Higher power density
- Better charge acceptance
- Lower battery weight

Vocational Needs

- Start-stop with voltage stabilization system, potentially including leadbased AGM battery with supercapacitors
- Engine off while approaching a stop, but at vehicle speed <20 km/h (not only after complete vehicle standstill as today)
- "Stop-in-motion": Engine off at higher speeds whenever acceleration is not needed.

A Partnership between the Northern Ohio Energy Storage Community, DOE and National Laboratories

R&D Efforts - PbA

- Battery manufacturers are currently working to implement the following general improvements:
 - Carbon nanotechnologies developing new types of additives to improve the conductivity of active materials
 - High surface area doping materials increasing charge acceptance while avoiding hydrogen evolution (gassing)
 - Low-cost catalysts recombining hydrogen and oxygen produced at regenerative brake events
 - Light-weighting solutions developing new designs and materials

A Partnership between the Northern Ohio Energy Storage Community, DOE and National Laboratories

Current Energy Storage Gaps – Lithium ion

Priority areas for improved performance:

- Reduced cost at battery pack level
- Increased energy and power density
- Improved battery lifetime
- Increased charge acceptance
- Better performance at cold (and hot)

Vocational Needs

- Lithium-ion batteries will be used in advanced micro-hybrid and mildhybrid vehicles.
- Lithium-ion batteries will be implemented in 48V dual battery systems together with a 12V leadbased battery
- Hybrid system (even 48V) support chassis systems, air conditioning compressors, and regenerative braking and more.

A Partnership between the Northern Ohio Energy Storage Community, DOE and National Laboratories

Current Engineering Efforts – Lithium ion

Performance and Cost - a materials play

- Improvement of cell materials and components
 - Anode, Cathode, Separator, Electrolyte
- Lower cost cell mechanical design
- Improvement of materials properties
- Scaling up in production of large cell formats

A Partnership between the Northern Ohio Energy Storage Community, DOE and National Laboratories

Current R&D Efforts – Lithium ion

Charge Capacity Values Colors Element Type B Conversion Anodes Gravimetric Capacity Li Ве C 0 (mAh g-1) 3861 Type B Conversion Cathodes 372 2062 756 Volumetric Capacity 2.72E-1 Commonly used Transition Na AI Si CI Ma Metals for Intercalation (mAh cm-3) 0.7-1.2 Electrodes 3579 2596 322 1383 2190 2266 κ Ca Sc Zn Ga Ge As 769 1384 1511 Rb Sr Zr Nb Mo Cd Sn Sb In 1012 1159 1980 1991 1889 Cs Ba Hf Ta W Pb Rn 550

A Partnership between the Northern Ohio Energy Storage Community, DOE and National Laboratories

Mid-Term R&D Efforts – Lithium ion

Silicon Anode Batteries

Challenges: Volumetric fluctuations, cracking, poor cycle life

Lithium Sulphur

 Challenges: High mechanical stress, unwanted reaction with electrolytes, nonlinear discharge and charge response

Solid State (thin film) Batteries

Challenges: Difficulty getting high current across solid-state interfaces

Lithium Capacitors

Challenges: Self-discharge, energy density, thermal design

Lithium Air Batteries

 Challenges: Limited by the oxygen evolution and oxygen reduction kinetics, especially oxygen evolution

Magnesium (anode) Batteries

 Challenges: Chemistry involved in making a magnesium-ion battery work efficiently has yet to be perfected (some promising work)

A Partnership between the Northern Ohio Energy Storage Community, DOE and National Laboratories

Current Engineering Efforts – Lithium ion

Systems integration (pack)

- Progress is being made in optimization and standardization of mechanical designs
- Better understanding of Battery Management
 System (BMS) functions, components and interfaces
- More advanced Thermal Management systems
 - Improve range of operating conditions
 - Reduce system complexity

A Partnership between the Northern Ohio Energy Storage Community, DOE and National Laboratories

Current Engineering Efforts – Lithium ion

Safety

- Efficient and high fidelity state-of-function monitoring techniques
- Advanced state-of-charge/ state-of-health indicators
- Cell diagnostic and supervision systems to support the lifecycle management of ageing
- Realistic standards for abuse tolerance are being released
- Need the concomitant improvements to the robustness of cell and pack design

A Partnership between the Northern Ohio Energy Storage Community, DOE and National Laboratories

Current Engineering Efforts – Lithium ion

Recyclability

With the recycling industry for lithium ion batteries still in its infancy, a variety of actors are also looking at how to optimize the separation of lithium-ion battery components at the battery's end-of-life.

A Partnership between the Northern Ohio Energy Storage Community, DOE and National Laboratories

Current R&D Efforts – Automotive Fuel Cell

A Partnership between the Northern Ohio Energy Storage Community, DOE and National Laboratories

Current R&D Efforts – Automotive Fuel Cell

Advantages

- Water is the only discharge (pure H₂)
- Potential transition 2020+
- Japanese investment in market adoption
- Plays well in California

Disadvantages

- CO₂ discharged with methanol reform
- Little more efficient than alternatives
- Technology currently expensive
- Hydrogen often created using "dirty" energy (e.g. coal)
- Pure hydrogen is difficult to handle
 - Refilling stations, storage tanks
- Perception of "future technology"
- Limited number of suppliers

A Partnership between the Northern Ohio Energy Storage Community, DOE and National Laboratories

Opportunities for Ohio – Already #2 or #3 in Auto Supply Chain

Area

- 1. Cell Chemistry (ies)
- 2. Cell Experience
- 3. Control Systems/Electronics
- 4. Recycling
- 5. PbA
- 6. Lithium Pack
 Manufacturing/Integration
- 7. Reduce Time/Cost of product validation testing

Ohio Opportunity

- 1. Materials, Binders, Additives
- NASA/Defense/Drones early users of emerging cell chemistries
- Strong Supply Base (auto, commercial, industrial)
- Design/Manufacturing for Recyclability; automotive recycling value chain
- 5. Continue leadership in PbA
- 6. Fill gap between OEMs and nameplate customers
- 7. In a world with increasing demands for more safety, durability and product validation

A Partnership between the Northern Ohio Energy Storage Community, DOE and National Laboratories

Future Opportunities for Ohio

Area

- 1. Lightweight Materials
- Form Factors (Design + Materials)
- 3. Intelligent vehicles
- 4. Fuel Cells
- 5. Reduce use of rare earth metals
- 6. BMS/Control Systems

Ohio Opportunity

- Migration of aluminum, lightweight steel, and performance plastics into vehicles and packs
- Reduce volume, add other functional roles
- 3. Lower-cost, lower energy sensors and systems to maintain load levels
- 4. Because we are at NASA and someone here is thinking about it!
- 5. Issue across all the industries
- 6. Security in a remote, V2I, V2V world

A Partnership between the Northern Ohio Energy Storage Community, DOE and National Laboratories

